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Attention is drawn to a principal difference between the transfer of a horizontal 
magnetic field by turbulence and by three-dimensional cell convection. 

If the motion of the conducting medium in the cells is such that the heated 
material ascends at  the centre while descending along the sides of the cells, then 
the magnetic tubes of force will be carried downwards by peripheral flows. 
Discrete ascending flows separated from one another by descending material 
carry only closed magnetic field loops. Such loops do not transfer net magnetic 
flux. As a result, the magnetic flux becomes blocked at  the base of the convective 
layer. 

1. Introduction 
A crucial point for any theory trying to explain the origin of the magnetic field 

of celestial bodies is the time scale, extent and manner of penetration (or decay) 
of the magnetic field into the bulk of the objects considered. If the conducting 
material is fixed, this time scale r is determined by the diffusion of the field due to 
ohmic dissipation: 

r = 4nu12/c2, (1) 

where s is the conductivity of the material, 1 the length scale and c the velocity of 
light (the Gaussian system of units being used). For the earth this time is about 
104yr, for the sun and the stars 2 10l0yr. The hypotheses on the primordial 
nature of the magnetic fields of the sun and of the stars (Cowling 1945) are based 
on the latter estimate. 

If the material can move, the field can change as a result of either the develop- 
ment of hydromagnetic instabilities when the field itself initiates motion of the 
material (Kipper 1968), or simply the transfer of field by the material when the 
field is so weak that it does not affect the pattern of motion and plays the role of 
a passive admixture. 

The latter situation is pertinent to the generation of magnetic field by material 
motion. Intensive motion of material in celestial bodies originates, as a rule, from 
thermal convection. Convection in the stars is of a turbulent nature. A large 
number of papers (see reviews of Parker 1970; Vainshtein & Zel’dovich 1971) 
are devoted to a consideration of field generation by the ‘turbulent dynamo’ 
mechanism. In these papers, one either does not consider the question of field 
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penetration into the body or assumes that in the presence of turbulent convection 
the field is transferred as if it  were a scalar admixture on a characteristic time 
scale 

rt = P/D, = /‘/K%&, ( 2 )  

where D, is the turbulent diffusion coefficient, V, and I, being the characteristic 
velocity and length scales of the turbulence. The dimensionless factor K is of order 
unity. Calculations of Parker (1971) yield K = 0.15. When using ( 2 )  one assumes 
V, and I ,  t o  be equal to the velocity and length scale of convective motion, thus 
making no distinction between the transport properties of convection and 
turbulence. 

The purpose of the present work is to draw attention to a principal difference 
between the transfer of magnetic field by convective motions and by random 
turbulence. 

We deal here with three-dimensional thermal convection. Its velocity field 
possesses an ordered structure in that the entire convective layer is divided into 
cells a t  whose centres the material ascends while at the peripheries it descends 
(the direction of motion can be of either sense depending on the actual physical 
properties of the material, etc. ; see Krishnamurti 1968). Convective motion with 
such structure is observed both under laboratory conditions (BBnard convection) 
and in nature (granulation and supergranulation on the sun). 

In an appendix to the paper (by H. K. Moffatt) the phenomenon of topological 
pumping is analysed by the methods of ‘mean field electrodynamics ’ under the 
approximation of low magnetic Reynolds number, and the main conclusion of 
the paper is confirmed. 

2. The mechanism of flux pumping 
Let three-dimensional BBnard convection take place in an infinite horizontal 

liquid layer. The flow in the entire layer has a cellular structure (hexagonal in the 
ideal case). The heated material ascends along the axis of each cell. Near the 
upper layer boundary i t  spreads towards the periphery of the cell and, on cooling, 
descends along the sides of the cell. On reaching the lower layer boundary, the 
material is heated, moves towards the cell axis and ascends again, and so on. 

The velocity field of such three-dimensional convection has a topological 
feature essential to us. This is that regions with a downward velocity form a 
continuous network within which one can draw a continuous line connecting cells 
arbitrarily far away from one another. Regions with upward velocities do not 
possess this property. They are embedded in the network of descending material 
and are isolated one from another. 

Imagine now an infinite ideally flexible filament to be placed on the top surface 
of the layer consisting of such cells. Near the top surface of the layer the material 
in each cell will spread from the centre towards the periphery. The flow of material 
will bend the filament, dragging it towards the sides of the cells. As a result, the 
entire filament will move into the region of downward velocities and eventually 
will be carried down, to the base of the layer. The filament as a whole cannot 
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return to the top surface of the layer because of the discrete nature of the 
ascending flows. 

The behaviour of this filament simulates that of an individual tube of magnetic 
field in a highly conducting medium. Such a tube will also be carried by con- 
vective flows to the base of the convective layer. The ascending flows cannot 
drag the tube as a whole back up. They can only tear from it closed loops. These 
loops do not carry any net magnetic flux. As a result, the original magnetic flux 
of the tube will be confined near the lower boundary of the layer. 

Thus three-dimensional convection acts as a valve with respect to the magnetic 
field, producing, on the average, a vertical gradient of the horizontal magnetic 
field component. This may be called a magnetic flux pumping effect. 

The transfer of a scalar field does not depend on the topology of convection. 

3. Formulation of the problem and its solution 
To check the above reasoning, we have considered a concrete case of the effect 

of three-dimensional convection on magnetic field. 
The problem was formulated in a rather simplified form and solved numerically. 

The magnetic field was assumed to be weak and not to affect the velocity field. 
The convective cells were taken to be of rectangular (square) shape with the 
velocity field in them given by 

(3) I u = V, = -sinnx(l+Qcosny)cosnz, 

v = V, = -(l+Qcosnx)sinnycosnz, 

w = V , =  [(l+cosnx)(l+cosny)-llsinnz. 

The z axis is vertical, the x and y axes being normal to the cell sides. The cell 
o c c u p i e s O < z < l , - l < x <  + l , - l < y < + l .  

This field satisfies the continuity equation for an incompressible fluid, 

v.v = 0, 14) 

and has the desired topology, the fluid ascending a t  the centre and descending 
along the sides of the cells. The net flux of fluid through any plane z = constant 
is zero. 

It is noteworthy that the three-dimensional velocity field given for rectangular 
(square) cells by Chandrasekhar (1961, chap. 2 ) ,  

u = - Q sin nx cos ny cos nz ,  

v = - Q cos nx sin ny cos nz ,  

w = cos nx cos ny sin nz, 

does not possess the required structure since here the regions of ascending and 
descending fluid alternate like the black-and-white chess-board pattern. One can 
draw arbitrarily long continuous lines through both ascending and descending 
regions. Therefore from the topological viewpoint, field (5) is two-dimensional. 

3-2 
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The behaviour of a magnetic field H in the given velocity field is completely 
described by the following equations: 

V.H = 0, (6) 

(7) a H p t  = T V ~ H  - (v. V) H +  (H. V) V, 

where 7 = c2 /4n(~  is the coefficient of magnetic field diffusion due to ohmic 
dissipation. 

We sought a stationary solution of the problem (ajat = 0). Because of the 
periodicity and symmetry, computation was carried out for one quarter of the 
convective cell (0 < x < 1, 0 6 y < 1, 0 < z < 1). The total magnetic field flux 
was assumed to be non-zero only in the direction of the x axis: 

CD, = /'I' H,dydz = I ,  

0, = j' j1 H,dxdz = 0, CD, = j'l/ H,dxdy = 0. 

( 8 )  

(9) 

0 0  
1 

- 1  0 -1 

Condition (8) normalizes the magnetic field. In  the absence of convection (or a t  
G = 0) one would have H, = I and H, = H, = 0. 

In  the order for condition (8) to be met in the steady-state case, the horizontal 
surfaces x = 0 and z = 1 should be impermeable to the magnetic field. For this, 
we set (T = co a t  z < 0 and z 2 1. Then from Landau & Lifshitz (1957, chap. 6) 
we have that a t  x = 0 and z = 1 

H ,  = 0. 

The conditions for the H, and H, components a t  z = 0 and z = I are obtained 
by equating to zero the electric field components tangential to the superconductor 
surfaces using the equation (Landau & Lifshitz 1957) 

C 

Noting that w = 0 and H, = 0, this yields for z = 0 and z = 1 

aH,,az = a ~ , l a z  = 0. (12) 

The boundary conditions for the sides of the convective cell ( x  = I and y = I) 
and the symmetry planes (z = 0 and y = 0) are obtained from the conditions of 
periodicity and symmetry: 

aH,/ax = 0, H, = 0, H, = 0 a t  x = 0, I ,  (13) 

aH,/ay = 0, H, = 0, a ~ , l a ~  = o at y = 0, I. (14) 

The solution to (6) and (7) with conditions (8)-(10) and (12)-(14) was sought 
in the form of expansions 

m 

0 
H, = HYik sin inx sinjny cos h z ,  (16) 

H, = C H:ik sin inx cos jny sin knz.  (17) 
00 
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0 0.5 1 0  
Y 

H =  1 - 
FIGURE I.  Magnetic field lines in planes with zero normal field components. The field 
strength is proportional to the distance between marks on curves. R, = 12. (a) y = 0. 
( b )  2 = 0. ( c )  y= 1. (d )  2 = 1. 

Substitiiting (15)-(18) into (6) and into the x and y projections of (7) yields an 
infinite set of linear algebraic equations for the coefficients. The set was solved 
numerically on a computer by iteration. For solution, the chain of equations was 
truncated by setting all harmonics with i,j, E > m to zero. The magnitude of m 
was chosen so that the higher harmonics would be sufficiently small. For R, 6 4 
it is sufficient to take m = 4; for R, 6 16, m = 6 (the number of algebraic 
equations here exceeds 1000). 

4. Discussion 
We carried out computations for R, = 4 ~ r d  V/c2  < 16. 
Table 1 lists the first-order coefficients for the magnetic field components for 

R, = 12. Higher-order coefficients do not exceed 0.023 for H,, 0.006 for Hv and 
0.023 for H,. 

It is difficult to imagine and display the spatial distribution of the magnetic 
lines of force. Therefore figure 1 presents the lines of force only in the planes with 
zero normal components. Note that areas where the lines of force come closer to 
one another do not, generally speaking, necessarily correspond to stronger fields. 
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H 

0 

FIGURE 2. Spatial magnetic field lines. The field strength is proportional to the distance 
between marks on curves. -, R, = 12; ---, R, = 16. Only a few of the computed lines 
are shown. For the sake of simplicity, projections of the lines onto the planes y = constant 
and z = constant are given (yielding information required for the construction of the spatial 
curve as a whole). x , points where the lines of force intersect the plane z = 0; 0, points 
where the lines of force intersect the plane x = 1. 

This is caused by the three-dimensional field structure. On the figures, it is the 
distance between marks on lines that is proportional to the field strength. 

Pigure 2 provides some idea of the spatial field distribution. 
The moving medium is seen to interact very strongly with the magnetic field. 

I n  the absence of motion, or a t  r = 0, one would have only a uniform field 
H = H, = 1, while H, = H, = 0. The motion of the medium results in deforma- 
tion and stretching of the magnetic tubes. This will cause generation of Hu and H, 
components comparable in magnitude to the original field H,, while a t  R, 2 8 
the field H, proper will reverse the sign in a part of the volume thus even forming 
closed magnetic loops somewhere (figures 1 and 2). 

We are interested in the behaviour of the magnetic field averaged over many 
cells. We have conditions (8) and (9). From (16) it follows also that 

As for the magnetic flux pumping process discussed in 3 2, its existence would 
produce asymmetry in the distribution of the averaged magnetic field 

(H,) = 1's' H,dxdy 
0 0  

with respect to the plane z = $. 
As follows from (15), the magnitude of (H,) is determined unambiguously by 

the coefficient,s HtOk, so that (H,) will be a function of z only if these coefficients 
with k $; 0 are non-zero. The asymmetry in question occurs if HtOk are non-zero at 
odd k. It turns out that these odd harmonics are zero for two-dimensional roll 
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Rln 

FIGURE 3. Amplitudes of first three harmonics of x field 
component vs. magnetic Reynolds number R,. 

convection and this is confirmed by the results of Weiss (1966), who also found 
that horizontal flux is redistributed symmetrically about the centre-plane by a 
layer of two-dimensional eddies. 

The same holds for the three-dimensional convection with Chandrasekhar's 
velocity field (5). Here the three-dimensionality may be thought of as produced 
by deformation of rolls conserving the topological structure of the ascending and 
descending regions.? For motions with isolated ascending flows odd-k harmonics 
are non-zero. 

The values of the first three coefficients H;"bk for the velocity field (3) are shown 
in figure 3 as functions of R,. Both the first and the second harmonics increase 
monotonically with growing R,; at first (R, 5 6) the second one dominates over 
the rest. The last circumstance masks somewhat at small R, the field asymmetry 
of interest to us. However the growth of the second harmonic gradually slows 
down while from R,, 2 4 the first harmonic grows continuously in direct pro- 
portion to R,, As for the third coefficient, it is very small and even negative at 
0 < R, 5 6, but afterwards i t  begins to increase. 

The distribution in height of the (B,) field averaged in the horizontal plane 
over many cells in the layer is presented in figure 4 for various values of R,. 

The effect of asymmetry in the net magnetic flux distribution across the con- 
vective layer is obvious. It should be stressed that the redistribution occurs 
despite the absence of a net material flow across the layer ((w) = 0 ) ,  the effect 
being totally due to the structural properties of the three-dimensional convection. 
Both the absolute and relative differences in the field strengths (€2,) between the 

t Generally speaking, one can expect that  any difference in the geometry or parameters 
(e.g. conductivity) of the ascending and descending flows will result in an asymmetric 
redistribution of magnetic flux. 
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FIGURE 4. Distribution of averaged horizontal magnetic field 
component across convective layer. 
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upper (z  = 1) and Iower (z = 0 )  surfaces increase monotonically with growing Em. 
Thus the original magnetic flux becomes more and more confined to the lower 
boundary of the convective layer. 

In  conclusion, it should be stressed that, in contrast to isotropic turbulence, 
thermal convection does not necessarily result in magnetic field dissipation. If 
the motion possesses a certain structure and direction which is often observed in 
nature, the field will be transferred into the bulk of the liquid, becoming blocked 
at the base of the convective layer. 

Appendix 
By H. K. MOFFATT, University of Cambridge 

The pumping effect described in this paper may be demonstrated explicitly 
(without recourse to numerical methods), under the assumption that the magnetic 
Reynolds number is small.? The equation for the steady field H(x) is then 

(A 1) -V2H = E V A  (uAH),  

where E < 1. We are primarily interested in the mean field Ho(z) = (H(x)) 
averaged over horizontal sections of the flow; this satisfies the equation 

-d2H0/dz2 = SV A 8, (A 2 )  

where b(x) = (u A H) is the mean electromotive force generated. Under the 
boundary conditions imposed in $ 3 ,  we have the further constraint that the 
horizontal flux is trapped between the planes z = 0, I : 

with the normalization adopted above. It is evident from symmetry considera- 
tions that 

(A 4) H,(d = (Ho(z), 0,O) 

t The methods used are essentially the methods of ' mean field electrodynamics' as 
applied to spme-periodic velocity fields by Childress (1970) and Roberts (1970). 
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and so (A 2 )  becomes 
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dHo/dz = c & ~ ,  

the constant of integration being zero, since 6, = 0 and dHo/dx = 0 on the 
boundaries x = 0 , l  [equations (11) and (12)]. 

When e < 1, we expand H as a power series 

where - 

and H(O) = (I ,  0,O).  When U(X) is periodic, these equations may be solved 
successively by elementary methods, making repeated use of the identity 

- v-2 cos (Zx + p )  cos (my + q )  cos (nx + r )  

= (12 + m2 + n2)-I cos (Zx + p )  cos (my + q )  cos (nz + r ) .  (A 8) 

If 63%) = (u A H(") and HAn) = (Hen)), then (A 5)  gives 

dHP+l'/dz = (A 9) 

Clearly &Lo) = 0 and Hbl) = 0. The constraint (A 3) implies that 

Hb%)(z)dz = 0 for n = 1,2,  ... . (A 10) 
so1 

With n = 0, (A7) gives 

- V2H(') = V A (U A H s )  = H(O). VU = au/ax, (A 11) 

and when u is given b y t  [equation (3)] 

u = (-sinx(l-t&cosy)cosx, 

- (1 + 4 cos x) sin y cos z ,  (cos x + cos y +  cos 5 cosy) sinz) (A 12) 
it follows that 

H(1) = &( - cos x ( 3  + cosy) cos z, sin x sin y cos z, - (3  + 2 cosy) sin x sinz). (A 13) 

Hence 8;) = (U,H($--U,H$~)) = -&sin22, (A 14) 

and, from (A 9) and (A lo), 
Hi2' = & cos 22. 

Hence, to order e2, the mean field is symmetrically perturbed about the centre- 
plane z = ~ T T ;  it is slightly intensified for z < i n  and for x > $77 owing to the 
horizontal divergence of the flow in these regions. I n  order to obtain the pumping 
(or valve) effect discovered (see 5 2 ) ,  it is necessary to continue to the next order 
in e .  

For this purpose, we need only calculate 

&h? = (u, Hk2) - U ,  Hi2)), (A 16) 

f We put x* = 7rx and drop the asterisk for convenience of notation; the magnetic 
Reynolds number used in $8 3 and 4 above is then R, = re. 
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and we need therefore retain only those terms of the horizontal Fourier expansion 
of H(2) involving sin x, cos x, sin y and cos y. For example, we have 

(U A Hcl)), = u,H$” - uzHL1’ 

= &(12 sinx sin y + sin y sin 2x+ 2 sinx sin 2y) sin22, (A 17) 

and we need only retain 

(u A H(l))z = isin x sin y sin 22 + . . ., (A 18) 

in calculating H(2) from (A 7). Similarly, we have 

(U A H(1))2/ = -&sin 2.4 14 + 2 cos x + 15:cos y + 12 cos x cosy + . . .), (A 19) 

and (U A H(1)), = - &( 1 + cos 2.2) (5 sin y + 12 cos x sin y f . . .). (A 20) 

We can immediately calculate the components of V A (u A H(l)), and from (A 7),  
using (A 8), we then have 

Hi2) = -2s C O S Y ( ~  + 6 cos X) 

+ & cos 2z(35 + 4 cosx+ 25 cosy + 10 cosx cos:y + . . .), (A 21) 

and H g  = i&sin2z(sinx+ ...). (A 22) 

(A 23) 

(A 24) 

Hence from (A 16), 

and so, from (A 9) and (A lo), 
8g) = - sin z + -& cos z sin 22, 

Hb3)(z) = & COS z( 37 - 12 COB2 2 )  = 25 COS Z - COS 32. 

This contribution to the field is antisymmetric about z = +n; in fact the flux of 
Hi3) in the lower half 0 < z < in is 

and the flux in the upper half +n < z < n is - 0-121. Continuation of the process 
shows clearly that Hbn)(z) is symmetric or antisymmetric about z = 4rr according 
as n is even or odd. The mean field Ho(z) is now given to order e3 by 

(A261 
7.52 €3 

48 240 
H , ( ~ )  = i + - cos 2z + - (28 cos - 3 cos 34  + 0 ( € 4 ) .  

It seems likely that the first three terms give a reasonable approximation for 
€ 5  1. 

Comparison of (A 26) with (15) shows that 

results that are not inconsistent with figure 3 (with E = RJn). 
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